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Summary  

A mathematical model is proposed, apparently for the first time, for the onager, a late Roman catapult. The 
elastic energy of the machine is contained in a cylindrical bundle of twisted elastic cords, and, although each 
cord satisfies a linear stress-strain law, the geometry of the entire bundle causes a torque to be exerted on the 
moving arm of the onager which is a nonlinear function of the angular deflection of the arm. This torque is used 
in the nonlinear differential equations of motion which are integrated numerically. Experimental work is 
described which assists in determining the torque, and in addition supplies ranges for the projectiles for various 
masses, sling lengths and finger angles (parts of the release mechanism). Predictions from the mathematics are in 
reasonable agreement with experiment. A new calibration nile for the onager is proposed, based on the 
numerical integrations, which complements that known since classical times for the two-armed Greek palintone. 
Finally an appendix contains a discussion of the effect of a buffer on the motion. 

1. Introduction 

The Greeks invented and developed catapults  which derived their power f rom the energy 
stored in twisted elastic fibres, either of  animal  l igament or  of  horse-hair. The  basic 
s tone-throwing version, the palintone, had  two such springs moun ted  vertically with an 
a rm inserted horizontally through the centre of  each. The  tips of  the arms, which pointed 
outwards when at rest, were joined by  a "bowst r ing" .  When  the centre of  the string, 
which held a pouch  for the missile, was drawn back by  windlass, the arm tips were pulled 
backwards  and towards each other, thus further twisting the springs; and on release they 
swung forwards, straightening the string which propelled the missile just  like a bowstr ing 
discharging an arrow. A great deal is known about  the design, and something about  the 
performance,  of  the palintone (Marsden [5] and [6], pass im) .  

Somewhere between A.D.  100 and 300 the Romans  developed instead a one-armed 
version, latterly known as the onager  or wild ass, which remained in use until about  A.D.  
600. Al though sometimes applied in field and naval warfare, it was too cumbrous  and 
massive for easy transport ,  and it found  its major  role in sieges, bo th  in at tack and 
defence. The palintone could, if sufficiently large, throw a stone of  up to 79 kg; and very 
p robab ly  the onager  could too. But the surviving informat ion about  it is meagre (Marsden 
[6], pp. 249-265).  All we can be sure of  is that  a single spring, moun ted  transversely in a 
wooden  frame, held in its centre a single a rm which carried at its tip a sling for the stone. 
The  arm was pulled back by  windlass, and on release swung forwards in a vertical arc. 
The sling, which acted as an extension to the arm, had one end fixed while the other  had a 
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Figure 1. Experimental model onager, drawn with short sling, buffer at 135 °, and arm drawn back. 

ring that fitted loosely over a pin - the "finger" - projecting from the tip of the arm. At 
the critical moment during the arm's swing, the ring automatically slipped off the finger, 
the sling opened and the stone was released. The arm was then arrested by a padded 
buffer. A reconstruction, necessarily involving much guesswork, appears in Figure 1, and 
formed the basis for a small machine built for field experiments. 

This paper presents, for the first time to the authors' knowledge, a mathematical model 
for the machine, the resulting predictions being compared with experimental measure- 
ments. The nonlinear differential equations of motion are formulated in Section 2, and 
the torque exerted on the moving arm of the onager by the twisted fibres is calculated in 
Section 3. Although the individual elastic fibres are supposed to satisfy a linear stress-strain 
relation the geometry of the entire bundle of fibres implies a nonlinear relation between 
the torque on the arm and its angular displacement. This torque is derived to agree with 
experimental results. Section 4 concerns the release mechanism, and the equations are 
integrated numerically in Section 5 using the torque already mentioned. Results, notably 
concerning the variation of range with relevant parameters, are contained in Section 6 
together with a comparison with observations. The experimental work is described in 
Section 7. 

The design of the two-armed palintone was regulated by a calibration formula 
(Marsden [6], p. 109) that was evolved about 270 B.C. The Romans no doubt worked out 
a comparable formula for the onager, but because of the poor survival of later Roman 
sources it has not come down to us. It is our purpose in Section 8 to use the numerical 
evidence generated by the mathematical model to propose such a formula. 
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Although friction and creep of the elastic cords and air resistance are neglected in the 
model, there is reasonable agreement with experiment - at least as regards variations in 
range with relevant parameters. An appendix describes the result of inserting a buffer - 
which in some circumstances may halt the rotation of the arm before-the missile is 
projected. Other recent mathematical work concerning ancient weapons includes Kooi [4] 
on the bow, and Hart  [3] on the palintone. In this paper mathematical work was carded 
out by the first author while the second author was responsible for the historical account 
and the experimental work. 

2. The equations of motion 

The onager, shown schematically in Figure 2, consists of a horizontal spring, cylindrical in 
form, and with axis O in this figure, made up of a large number of cords of elastic fibre 
all parallel to the axis of the cylinder except at the ends. Here the cords pass over levers, 
one at each end of the cylinder and at right angles to the axis, and are securely tied. The 
levers are each socketed into a metal washer which is embedded in a wooden frame. A 
uniform rod called an arm (CB in Fig. 2) is inserted through the middle of the fibres at 
the mid point of the spring cylinder and is held at rest. Both washers are then rotated in 
the same direction around the virtual axis connecting them as indicated in Figure 1, thus 
twisting the fibres symmetrically around the arm and exerting a torque on it, and are 
securely pinned. (It is noted that the cylinders in [3] were incorrectly assumed to be 
twisted asymmetrically - but the main result of that paper is unaffected by this 
assumption.) The missile A is placed in a light pouch which is attached to the end B of the 
arm by four strings of equal length which are supposed to be of negligible mass, 
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Figure 2. Elevation of the onager, showing two possible positions of the buffer: at 0 = 90 ° and 0 = 135 °. 
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inextensible and perfectly flexible (see Fig. 1). The two lower strings are firmly secured to 
the arm at B while the two upper strings end in a metal ring which is free to slide over a 
short rigid metal pin - called a finger - fixed at angle a to the arm. The arm is now 
wound down to the firing position - at angle 01 to  the horizontal - by a windlass thus 
further twisting the fibres of the spring (Fig. 2). On release, the arm is rotated rapidly 
counterclockwise by the torque in the spring fibres, and the missile in its pouch also 
rotates around the point B until friction cannot further restrain the ring on the finger. At 
this point the ring slips off the finger and the missile is launched as in a sling shot. The 
arm is brought to rest by a buffer shown in Figure 2 either at the vertical position of the 
arm or at 45 ° beyond the vertical position. The finger angle a can be varied and its value 
has a critical effect on the range of the missiles as will be seen. 

The equations of motion of the onager are derived as follows. First we note the radial 
and transverse components of acceleration of B, 102 and 10" as shown in Figure 2. 
Referring to this figure the second law of Newton for the projectile A, of mass rn, 
resolved along the sling mean direction AB is then 

ms~ 2 = T*  - mg  cos ~ - ml[O'cos(O - ~)  - 0 2 s i n ( 0  - ~ ) ] ,  ( ] )  

where 0 is the angle of inclination of the arm BC with the horizontal, ~ is the angle 
between the sling (supposed straight) and the downward vertical through the end B of the 
arm, s is the sling length, l is the length OB from the axis of rotation of the arm to the 
end B, g is the acceleration due to gravity and superposed dots indicate time derivatives. 
Also T* is the resultant tension in the direction AB. 

Also resolving the second law along the perpendicular to BA in the sense of increasing 
we get 

rns~ = - m g  sin ~ + ml[O" sin(0 - ~) + 0 2 cos(0 - ~) ] .  (2) 

A third basic equation follows from the principle of angular momentum written for the 
arm about the fixed axis O: 

I0"= M - WI '  cos 0 - T*I  cos(0 - ~) ,  (3) 

where I is the moment of inertia of arm and spring about the axis O, W is the weig, ht of 
the arm, l '  = OG and M is the restoring torque exerted on the arm by the spring. 

On eliminating T* between equations (1) and (3) and collecting the terms in 0" we find 

0.= M -  WI '  cos 0 - ml cos(0 - , ) { s ~  2 + g c o s ,  - 10 2 sin(0 - ~,)} (4) 

I +  ml 2 c0s2(0 - 0)  

After specification of the torque M and suitable scaling of variables, the nonlinear 
differential equations (2) and (4) are to be integrated to find the motion. But first we must 
determine the torque M. 

3. The torque exerted by the spring 

We consider the spring cylinder of length L and radius a (measured at the inner edge of 
the cylindrical washers) when untwisted. The upper and lower ends of the fibres are fixed 
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Figure 3. Tightly twisted fibres and torque on the arm. 
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securely at rest in the washers and the fibres are divided into two half cylinders by the 
insertion of the arm at mid section. When the fibres are twisted they appear as in Figure 
3. It is apparent that the insertion of the arm, of thickness h, causes a distention in the 
centre of the fibre bundle while the remainder, of total length L'  say, can be regarded as 
of uniform radius. The model proposed for the calculation of the torque on the arm now 
consists in assuming that both the total length L of the whole bundle and the radius a of 
the twisted uniform parts are unchanged from the untwisted state, that the distended 
central part carrying the arm moves as a rigid body rigidly connected to the fibres above 
and below it, and that the individual fibres are twisted into helices. 

We can then easily calculate the torque exerted on the upper cross-section of the 
central rigid part by finding the traction in the fibres of the uniform upper half cylinder 
of length L'/2. By symmetry the uniform lower half cylinder exerts an equal torque. We 
therefore now consider the upper half cylinder of length L'/2 in Figure 4a in which there 
are many untwisted elastic fibres all parallel to the axis MN, a typical fibre being marked 
RS (and S1T in the lower half cylinder) at a distance r (~< a)  from the axis. If the arm CB 
is now twisted through an angle X to position C'B'  (Fig. 4b) the upper half fibre RS is 
supposed to be stretched into a helix R'S' of pitch angle ~/on a cylinder of radius r. The 
lower half fibre TS 1 is stretched symmetrically to a similar helix T'S~. The same result is 
of course obtained if the arm is held fixed and the end washers are rotated in the same 
direction. Note that the axial fibre MN alone undergoes no stretching with the maximum 
stretch occurring in the outermost fibres. Although we assume that individual fibres 
follow a linear stress-strain law of extension, this differential stretching of fibres leads, as 
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will be seen, to a nonlinear relation between the resultant torque on the arm and its angle 
X of rotation relative to the washers. The calculations are as follows. 

Taking Cartesian axes xyz as shown in Figure 4b, the coordinates of a typical point on 
a helically deformed fibre in the upper half cylinder are 

x = r c o s ~ ,  y = r s i n ~ ,  z = r ~ t a n ' / ,  (5) 

where ~ is the angle of rotation relative to that point. The arc length of the entire 
stretched half fibre, initially of length L ' / 2 ,  can be calculated as L * / 2  = r X sec 3', and 
the stretch is 

L * / L ' =  (2rx /L ' )  sec ~, = A, (6) 

say. From (5)3 with ~ = X we find 

L ' /2  = r X tan ~/. (7) 

Eliminating ~, between equations (6) and (7) we find the stretch of a fibre: 

A = (1 + (2xr/L ' )2)  1/2. (8) 

Next we calculate the torque M exerted by all fibres on the arm. Assuming a 
continuous distribution of fibres, we integrate the turning action of the upper fibres on 
the upper part of the central rigid section of the spring cylinder as follows. If ,r is the 
typical fibre stress we have by symmetry for the total torque M: 

M / 2  = 2~r r2~ cos 3' dr .  

Assuming Hooke's law for a fibre, 

r = k ( A  - 1), (9) 

where k is constant, we use equations (6) and (9) to obtain 

M / 2  = 4~rk (x /L ' ) j~r ' (1  - A -1) dr .  (10) 

Since A is given by (8) we find, on performing the necessary integration, that the total 
torque is given by 

M / ( r r k a ' ) = p a [ 1 - ( 4 / 3 ) ( p a ) - 4 { ( 1  + (pa)=) 3 /2 -  3(1 + (pa)2) l /2+ 2}]. (11) 

Here p = 2 x / L ' ,  and, by observation, we have (see Fig. 3): 

L' = L - h - a. (12) 

It must be emphasized that we have neglected friction in and between fibres in calculating 
the above formula (11). 
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Figure 4. Illustrating twisting of a typical elastic fibre when the arm is rotated through angle X. The axial fibre 
IVlN alone is unextended. (Not to scale). 

On comparing the torque/angle relation given by (11) with an experimental investiga- 
tion of the response of the arm o f  a typical onager to applied torque, it was found that 
formula (11) gave a reasonably close prediction of the torque over the experimental range 
50 ° ~ X ~< 170 °. The relation between 0 (see Fig. 2) and X in the specific case considered 
where 01 = 15 ° is given by 

1 8 5 - -  - -  0 ,  (13) X = i~6~ 

radians, and on inserting this value in the expression for p we obtain from (11) the 
relevant torque as a function of 0 for motion of the arm. 

To summarise, we write for the torque 

M = M o Q ( O  ),  M o = ~rka 3, 

where Q(O)  is non-dimensional and is given by the right side of equation (11) with 

2a t185 0).  
p a  = - -~  t i - ~ r  - 

(14) 

(15) 

Here 0 is measured in radians. We choose k so that the maximum torque given by (14) 
agrees with the maximum torque observed in static experiments with the specific machine 
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Figure 5. Graph of the nonlinear function (14) (torque against rotation X of arm) (solid curve) and comparison 
with experimental points, marked X. M -  953.53M/M o. 

studied. The relation (14) is nonlinear and is shown in Figure 5 together with experimen- 
tal points. 

It is not difficult to derive instead of (11) a form for the torque M based on a finite 
number of fibres rather than a continuous distribution. However no better fit with 
experiment is thereby attained, and in this case the continuous distribution leading to (11) 
is preferable since the integration of the equation (4) is simpler. 

It should be remarked that the assumption (9) of Hooke's linear law for the individual 
fibres appears to be valid for the actual case considered since the maximum strain in 
outside fibres as calculated by (8) is about 7%, and by experiment the horse-hair fibres 
used satisfied the linear law (9) up to about 12% strain. 

Regarding formula (11) it is also worthy of note that for large pa ( >> 1) (large angle of 
twist X) the formula reduces to a well-known result. We have M / M  o - p a ,  or 

M - 2 ~rka 4x/L,"  

This is recognized as the torque for the finite twist of a solid elastic cylinder, and was 
used in a different application to catapults in Hart [3] - with L' replaced by L. For small 
pa (<< 1) (small angle X or long thin cylinder) M / M  o is approximated by (pa )3 /3 .  

4. The release mechanism 

As already mentioned in Section 2 the projectile is carded in a light pouch which is 
suspended by four light cords from the tip B of the arm - see Figure 1. The two lower 
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Figure 6. Illustrating the release of the upper cords of the sling on the finger. 

cords as shown are fixed to the arm; the two upper cords end at the arm in a metal ring 
which fits loosely over a "finger" - a thin pin of metal fixed at the arm tip but capable of 
being set at various finger angles a - measured positively above the centre line of the 
arm. For simplicity of treatment we replace the forces in the two fixed cords by a single 
resultant force T ' ,  and the forces in the two cords attached to the ring are replaced by a 
force T '  of equal magnitude, these forces being in the vertical plane of symmetry of the 
arm and equally inclined at angle 8 to the line BA - see Figure 6. In terms of the tension 
T*  used in previous sections we have 

T* = 2T '  cos 8, 

When the arm is released under tension of the spring, the sling rotates around the moving 
arm tip B until the angle between the finger and the upper force T '  is sufficiently small 
and friction between the finger and the cord ring can no longer hold the latter at relative 
rest. When this point is reached the upper cords fly off the finger and the missile is 
released. 

If ~ denote the angle between upper force and finger we have, for no relative motion 
between the ring and finger (and neglecting the small mass of the ring), 

F = T '  cos tk ~</tP = # T '  sin ~, (16) 

where F is the force of friction on the ring tangential to the finger, P is the normal 
reaction, and # is the coefficient of friction. 

From the diagram we note that 

+=~r- -0  - + - 8 + a = ~ + O - + - 8 + a ,  (17) 

and equation (16) implies 

t a n  + O - ~, - 6 + a > _ . t a n  - , (18) 
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where f is the angle of static friction: tan f =  it. The only relevant consequence of (18) is 
that 

0 - 4~ >/8 - f -  a ,  (19)  

for no slipping of the ring on the finger, and the missile is released when equality holds: 

0 - ~b = 8 - f -  a .  (20) 

5. Integration of  the equations of  mot ion  

We now substitute the form (14) derived for the torque exerted by the spring on the arm 
into equation (4) and integrate numerically the resulting nonlinear differential equation 
together with (2). First however it is desirable to introduce a dimensionless time variable 
T and dimensionless parameters ~1, c, )~, ~ as follows. We set 

N 2 = M o / ( I e ) ,  T = N t ,  7 l = W I ' / ( I N 2 ) ,  (21) 

, = m l 2 / I ,  )~ = l / s ,  ~ = g / ( s N  2) = h g / ( / N 2 ) .  

Here t is the time variable and c is a dimensionless number chosen to ensure a suitably 
small range of integration in T. Evidently N has dimensions (time)-1. 

Denoting by dashes derivatives with respect to T equations (4) and (2) become, 
respectively, on using (14) and (21): 

c F ( O ) - * l  cos 0 cX -1 c o s ( O -  ~b)((q/) 2 + ~ cos ~ - X ( O ' )  2 s i n ( 0 -  ~)} 
O PP 

1 + c cos2(0 - ~)  

-=H, 

say, and 

,/," = - ~  sin q,+ X [ H  s i n ( 0 - q , )  + (8 ' )  2 c o s ( 0 - p ) ] .  

Initial conditions chosen are 

(22) 

(23) 

Equations (22) and (23) were reduced to a set of four first-order equations and were 
integrated by means of a fourth-order Runge-Kutta method on the University of 
Queensland DEC-KL10 computer. The subroutine used was the IMSL DVERK [2] and a 
variety of parameters was considered - but always keeping the initial 01 = 15". The 
solutions appear to be weakly dependent on the parameters ~ and ~ and most attention 
was paid to varying the projectile mass (c) and the sling length (X). 

0=01, t~=0, O'=~pt=O. (24) 
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6. Range, discussion of numerical results and comparison with observation 

From the results of numerical integration the general inference for a typical set of 
parameters is that both 0 and q~ increase monotonically from the initial conditions (24) 
with 0 less than ~. This behaviour holds from T = 0 up to the point of projection of the 
missile - which for given a, ~ and f is given by equation (20). 

If  we neglect air resistance the range of the projectile can easily be calculated from 
elementary theory. Letting the subscript zero refer to the moment  of projection, the 
horizontal and vertical component  velocities of the projectile are at this moment:  

v x = 10 o sin 00 - S~o cos q~0 = sN(XO~ sin 00 - q~ cos qS0), 

Vy = I0 o cos 00 + sq; 0 sin d~ o = sN( XOd cos 00 + ~b~ sin •0), 
(25) 

while the angle of projection is 

fl = arctan( Vy/V x). (26) 

Then the range of the projectile is R = 2g-lVxVy, and we define the dimensionless range 

k = gR/(212N 2) = VxVy(hSN )-2. (27) 

Here we have also neglected the height of projection since it is a smaller source of error 
than neglect of friction. (It  would increase maximum ranges by less than 0.2 percent and 
smaller relevant ranges by less than 2 percent in the cases considered.) 

The specific onager studied had the following characteristics. It  had a uniform brass 
a rm in the form of a cylindrical tube of mass 51.75 grams, length 193 mm, and diameter 9 
ram, which remained almost rigid in the motion. The spring cylinder of horse-hair fibres 
was of mass 28.35 grams, length L = 186.4 m m  and radius a = 10.7 mm. Thus by (12), 
L '  = 166.7 mm. Also, in Figure 2, 1 = 175 ram, l '  = 78.5 mm. From this information the 
moment  of inertia of the arm about O was calculated at 0.479795 x 10 -3 kg m a, and that 
of the spring was 0.541 x 10 -6 kg m z. In the latter case the formula mass x a a / 6  was 
used - corresponding to a continuous cylinder fixed at the ends but with a cross section 
rotated through an angle proportional to its distance from the nearest end. 

The total for I was thus 0.480336 x 10-3 kg m 2. The torque parameter  M 0 was chosen 
as indicated after equation (15) to correspond to the turning action of a weight of 15.949 
kg acting at right angles to the arm at a point 98 m m  from O with 0 = 15 °. This implies 
that M 0 = 899.3877 Nm. 

Next  a trial integration shows that the number  c introduced in (21) can be taken as 
234.0503 to ensure that the relevant range of integration can be included in the interval 
0 ~< T ~< 2. This gives N = 89.4427 sec-1, and it may be deduced that the typical time of 
discharge of the onager is about 1 /90  seconds. The other parameters in (21) are in this 
case 

~1 = 1.037084 X 10 -2,  ~ = 7.007143 x iO-3X. (28) 

In calculation, though not in experiment, we consider five sling lengths: s = 47, 71, 94, 
118 and 141 ram, and in each case three projectile masses (glass marbles): 3.5, 4.9 and 6.3 
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Table 1. Results for a typical integration of equations (2), (4) (Case 1). The angle of  friction on the finger is 50 *. 
Also ¢ ~ 0.2869085, 2, ~ 3.723404, ~ = 1.037084 × 10-  2, ~ = 2.609043 × 10-  2, 8 = 2 °. 

T 0 o ~o a R u / ( s N )  fl 
degrees degrees degrees degrees 

0.60 44 46 - 4 6 . 6  0.7474 6.5570 75.59 
0.80 62 93 - 17.4 3.0474 9.4684 54.76 
0.91 72 127 7.12 4.1464 11.0143 35.69 
0.97 77 148 22.7 3.4786 11.5994 22.90 
1.05 84 176 44.2 0.8264 11.8627 4.69 

grams. Allowing 1 gram for the pouch and strings this gives 

= 3.723404, 2.464789, 1.861702, 1.483051, 1.241135, 
c = 0.2869085, 0.3761690, 0.4654295, 

(29) 

so that in all 15 cases were considered - numbered 1 to 15. Having fixed c and ~, , / and  ~" 
are given by (28). 

It was convenient in each integration run to print out 0, q~, /7 and ~ for T = 0 (0.01) 
2.00. Then, for an arbitrary T in this range and with friction angle f =  50 °, 8 = 2 ° (by 
experiment), substitution in (20) of the corresponding values of 0 and ~ gives the finger 
angle a for release of the projectile at that T. We can also calculate the velocity u at 
projection, fl and k from equations (25)-(27). Some typical results obtained in this way 
are shown in Tables 1 and 2, and in Figure 7. 

We note some general trends. From Table 1 for example (for Case 1 and the shortest 
sling) for increasing finger angle a the missile velocity u at projection increases, but the 
angle fl of projection decreases. The dimensionless range R increases to a maximum then 
decreases, with the maximum in this case being attained at a = 7.12" and projection angle 
with the horizontal 35.69 ° (the latter angle varied between 34.2* to 38.2* at maximum/~ 
in the 15 cases considered). If the missile mass is increased the maximum range R is 
diminished and moves to a larger value of a (e.g. Figure 7a). The effect of lengthening the 
sling is shown in Figures 7b, 7c. The maximum range increases but there is a decrease of 
about 22* in the corresponding finger angle for each increase in sling length+ with the bell 
shape of the curves becoming narrower and higher - indicating a greater sensitivity to 
increasing sling length. A similar decrease in ranges on increasing the missile mass is also 
noted in Figures 7b, 7c. The smooth solid curves in Figure 7 all correspond to the buffer 
(Figure 2) being placed at 0 = 135". Some representative data for six cases are presented 
in Table 2. 

The dashed curves in Figures 7b and 7c correspond to results obtained when a buffer is 
placed at 0 = 90". Such a buffer has no effect on the motion with the shortest sling 
(Figure 7a) since the missile is launched before the arm reaches the vertical position. But 
for the two longer slings this situation does not happen and the missile is still in its pouch 
when the arm strikes the buffer. No rebound occurs due to padding on the buffer and we 
suppose that the arm comes to rest instantaneously. Details of the resulting motion of the 
missile are contained in the Appendix but the result on the range k curve is to cause a 
bifurcation from the solid curve at 0 = 900, and it is found that for a finite interval of the 
finger angle there is a constant range less than the maximum in the unbuffered motion. 
However, if a is increased sufficiently, a variable but diminishing range again appears. 
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Figure 7 (below). Predicted dimensionless range R ' =  15.929iR against finger angle a (degrees) for three sling 
lengths s: (a) 47 mm, (b) 94 mm, and (c) 141 mm. Points X refer to projectile mass 3.5 g (Cases 1, 4, 7), points 0 
refer to projectile mass 4.9 g (Cases 2, 5, 8). Angles O*, 4 ° are labelled for certain points. Dashed curves 
correspond to buffer at O = 90 *, solid curves for buffer at O = 135 ° (and at O = 90 ° for Case (a)). Friction angle 
[ = 5 0  o, a = 2  o . 

Figure 8 (above). Observed range R (metres) against finger angle a (degrees) for three sling lengths s: (a) 47 
mm, (10) 94 ram, and (c) 141 ram. Points X refer to projectile mass 3.5 g, points 0 refer to projectile mass 4.9 g. 
Dashed curves correspond to buffer at O = 90 °, solid curves for buffer at O =135 °. The solid curves in cases (a) 
and (b) are also valid for buffer at O = 90 *. Compare with Figure 7. Friction angle f = 50 °, 8 = 2". 

E x p e r i m e n t a l  resul t s  a p p e a r  in  F i g u r e  8 a n d  m a y  b e  c o m p a r e d  w i t h  t he  p r e d i c t i o n s  o f  

F i g u r e  7. T h e  sca l ing  has  b e e n  c h o s e n  to  m a k e  iden t i ca l  t he  m a x i m u m  ranges  in  F i g u r e s  

7c  a n d  8c r e f e r r i ng  to  t he  3.5 g missi le .  I t  a p p e a r s  t ha t  a g r e e m e n t  b e t w e e n  the  t w o  sets o f  

resu l t s  is r e a s o n a b l e  as r ega rd s  m a x i m u m  va lues  o f  range ,  f inge r  ang les  a t  m a x i m a ,  

i n c r e a s i n g  r ange  fo r  l o n g e r  s l ing w i t h  f ixed  miss i l e  mass ,  a n d  d e c r e a s i n g  r a n g e  w i t h  f ixed  

s l ing l e n g t h  and  i n c r e a s i n g  miss i le  mass  - w i t h  t he  f n a x i m u m  sh i f t ed  to  t he  r ight .  T h e  



358 

Table 2. Prediction and observation compared. Predicted maximum ranges (a) for unresisted motion, (b) with air 
resistance. Cases 1, 2, 4, 5, 7 and 8. Friction angle f = 50 °, 8 = 2 °. 

Sling Missile max. a (a) (b) R 
length mass ,~ degrees max. max. observed, 
mm. grams R R metres 

metres metres 

47 3.5 4.1464 7.12 207.1 89 66 
4.9 3.6855 7.30 184.1 86 68 

94 3.5 5.7621 - 16.7 287.8 104 92 
4.9 5.0626 - 16.1 252.9 102 89 

141 3.5 6.2778 - 38.7 313.6 110 99 
4.9 5.5329 - 35.9 276.4 106 94 

general shape of the predicted solid curves appears to be verified except that the 
observations are scanty for cases 8b and 8c to the left of maximum range. Some 
discrepancy appears however as regards the buffered motion. Observation for the 94 m m  
sling shows no buffered motion even with the buffer placed at 0 = 90 °, whereas 
prediction shows this type of motion for both masses considered (Figures 7b, 8b) and 
buffer at 0 = 90 °. Also, although observation for the 141 m m  sling now shows the 
existence of buffered motion, there is a somewhat greater range attached to this motion 
than is predicted for either of the masses thrown (Figures 7c, 8c). 

I t  is conjectured that these discrepancies may be due to the neglect of friction in and 
between the elastic fibres in the formulation of the elastic model. Friction would be 
expected to lead to slower rates of increase in 0 and ~ than those predicted, with the 
angle 0 = 90 ° being encountered at greater values of a than those shown in Figure 7c. 
Also, if the effect of friction were sufficiently great, one could envisage in the case of the 
94 m m  sling a performance rather similar to that of the 47 m m  sling wherein the entire 
solid curves in Figure 7b are traced out without the angle 0 = 90* being encountered. 
Evidently the predicted absence of buffered motion for sling length 47 m m  and buffer at 
0 = 90 ° is confirmed by observation (Figures 7a, 8a). 

All of the previous work assumes that the missile suffers no air resistance. However, an 
estimate of the range when air resistance is allowed for can be readily made and 
appropriate comparisons appear  in Table 2. These estimates were obtained by use of 
Figure 6 in the paper  of Zufiria and San Martin [9]. Observed ranges vary between 74 and 
90 per cent of the theoretical values. Again the comparison appears reasonable consider- 
ing the neglect of creep and friction between the elastic fibres in the mathematical  model. 

7. Experimental work 

A model onager was built (Figure 1), its design adhering as closely as possible to the 
meagre information provided b y t h e  ancient sources, and adopting what seemed the best 
features of other modern reconstructions. The main frame was of wood, with steel 
washers, pull-back mechanism and trigger; a hollow brass arm with a wooden plug to 
hold the finger; and a thin leather sling attached by fine strings. The spring was made of 
two-ply horse-hair cord; in default of any information on its proportions, those specified 
for the palintone were used (1 : 8.7). For  the same reason, the length adopted for the arm 
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was arbitrary, though its approximate length was dictated by the layout of the rest of the 
machine. Dimensions of spring and arm are given in Section 6. A torque of 1560 kg mm 
was chosen as being not far short of what the frame would stand; to achieve it the spring 
was initially twisted from the slack position (fibres parallel) by turning the washers 
through about 180 ° before the arm was pulled back, but as the horse-hair stretched in use 
this pre-tension had gradually to be increased to about 360 ° in order to maintain the 
required torque. The arm when drawn back lay at 15 ° above the horizontal. 

The model was tested in a virtually level field on virtually windless days. As described 
elsewhere, four of the parameters were varied. Three sling lengths were tried, five finger 
angles, two projectile weights, and two buffer positions. This entailed 60 permutations. 
For each permutation five shots were fired and their average range was recorded: see 
Figure 8, and Table 2 for maxima. For reasons of time it was not practicable to vary the 
other parameters, namely the dimensions of the spring and of the arm. 

Because of the relatively small size of the model, absolute precision was impossible. 
The finger angles could be only approximately measured; the friction between sling ring 
and finger perhaps varied slightly; the torque was checked (and if necessary adjusted) 
only every five shots; and it was not possible to mark the point where the projectile hit 
the ground, only that where it came to rest: it often bounced on impact, usually forwards 
but sometimes backwards. For all these reasons, the experimental results should not be 
taken as exact; but they are probably well within 10% of the truth, and they are 
reasonably consistent. 

For practical purposes, the most important results were these. 

1. The longer the sling, the greater the maximum range. 
2. The longer the sting, the further back (negative a) the finger had to be bent to achieve 

maximum range. 
3. The further back the finger was bent, the higher the trajectory, and the further 

forward, the flatter. But there is a limit to the backward angle, beyond which the sling 
slides off the finger when the arm is drawn back; that is why the plots for the medium 
and long slings on Figure 8 only start at or near the maximum range. 

4. With the longest sling, the buffer had to be set at 135 ° to achieve maximum range, but 
with the short and medium slings it made no difference whether the buffer was at 90 o 
or 135 ° . 

5. The weight of projectile, within the limits experimented with, made little difference to 
the maximum range. 

The results thus show clearly that a long sling is best. But in practice we may suspect 
that its very length prevented it from being applied. To allow such a sling to hang free 
when the arm is drawn back involves raising the whole onager off the ground; easy on a 
model, difficult with a full-sized version. It could be done; but the extra framework 
necessary to raise it would markedly increase both the overall weight (with extra problems 
in transport) and the exposed area of the onager (which would make it more vulnerable to 
enemy fire). Probably the Romans used nothing longer than the equivalent of our 94 mm 
sling. Alternatively, as a referee suggests, a longer sling could be fitted if a hole were dug 
in the ground behind the onager. 

This model was by no means the first modern attempt to reconstruct the onager. De 
Reffye built one about 1860, with buffer inclined forwards and an adjustable finger 
(Anon. [1]). From 1903 Schramm made two models and a full-sized onager, which 
incorporated a very short sling and a very short swing for the arm, the buffer being 
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inclined backwards (Schramm [8] pp. 70-74). At the same time Payne-Gallwey built one 
with a vertical buffer (Payne-Gallwey [7], pp. 279-299, App. 1 pp. 12-18). And Marsden 
more recently made a model (Marsden [6], pp. 254-265). Of these, Payne-Gallwey's 
performed the best, throwing a stone of 3.6 kg - twice what the palintone formula 
specifies for that size of spring - to over 450 m. Some of these men appreciated the effect 
of an adjustable finger and of different lengths of sling; but in no case did they carry out 
any prolonged tests, and they did no experiments - or at least published no results - with 
altered parameters. Such few figures as are available are of little use because the operating 
torque was never recorded and the springs were of differing materials. The present trims 
therefore break fresh ground. 

8. A calibration formula for the onager 

The Greeks had a rule for the construction of their two-armed palintones or large stone 
throwing catapults. The first part of it consisted of a calibration formula which gave the 
diameter of a spring cylinder in terms of the cube root of the mass of the projectile to be 
thrown: 

2a = c o n s t a n t ,  m 1/3, (30) 

[see e.g. Marsen [5], p. 25]. The second part involved a table which gave all other 
dimensions of the palintone in terms of the spring diameter. No such calibration formula 
is known for the onager. We propose one here - inferred from the numerical results 
obtained from the 15 cases of the mathematical model studied. Since the latter gives 
results comparable with reality it is reasonable to suppose that the calibration formula 
could be used for the first part of a design programme for onagers, at least over the range 
of parameters studied in this paper. It should be noted that due to the more complicated 
model required for the onager it is not possible to give the same type of explicit derivation 
of the calibration formula that was possible for the palintone in Hart  [3]. 

We propose a least-squares fit of a linear function in the mass and sling length 
variables c and ~ as defined in (21) to the reciprocal of the dimensionless maximum 
range j ~ l .  Here maximum refers to the greatest value of /~ found in a given case where 
varies and all other parameters are fixed (see e.g. Table 1). 

Thus we consider 

l/Rm-~Co+ClC+c2h, (31) 

and find the coefficients c 0, c 1, ¢2 by minimising the sum of the squared differences of 
" 1 the right side function in (31) and the predicted values of R~ given by the mathematical 

model. We find 

c o = 0.0243042, c 1 = 0.284235, c 2 = 0.0372434, 

with a root-mean-square error 

(32) 

\ 1/2 
,~sf2J15) =0.003489, 
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Table 3. Least square fit of j~ l  (unbracketed figures) by the linear function in (31) (bracketed figures). Cases 1 
to 15 used. 

( k 

1.241135 1.483051 1.861702 2.464789 3.723404 

0.2869085 0.159291 0.163046 0.173547 0.194336 0.241172 
(0.152078) (0.161087) (0.175190) (0.197651) (0.244526) 

0.3761690 0.180736 0.185554 0.197526 0.220522 0.271333 
(0.177449) (0.186458) (0.200561) (0.223022) (0.269897) 

0.4654295 0.203167 0.209082 0.222624 0.247640 0.302585 
(0.202820) (0.211829) (0.225932) (0.248393) (0.295268) 

cij being the deviation at a typical point. The pointwise results are shown in Table 3, the 
figures in brackets being the value given by the right side of (31) and the unbracketed 
figures the values o f / ~ 1  obtained by integration of the equations (2) and (4). 

If the result of the above approximation (31) is accepted as being reasonably valid over 
the intervals of c and X considered (which we consider reasonably representative of the 
practical situation) the calibration formula is at once deduced. For  we have by (31) 

h,~ = g R r J ( 2 1 2 N  2) = (c o + c l m l 2 / I +  C2•) -1, (33) 

where R m is maximum range for varied a with all other parameters fixed. Let us now 
assume that, as with the palintone, all dimensions in the onager are scaled by the elastic 
spring radius a. Thus we assume that 

s = k l a ,  l =  k2a,  I =  k3a 5, M0= k4 a3, (34) 

where k i are constants independent of a, and (14) was used. Then by (21) and (34) 
N 2 = k 4 ( c k 3 ) - l a  -2, and, after rearranging, we find from (33) that 

with 

R m = ( A * / g ) a a / ( m  + qa3), (35) 

A * = 2 k 4 ( c c l )  -1, q = k 3 ( C l  k 2 ) - x ( c o  + c2 x ) .  

We recognise in (35) the type of dependence of maximum range on spring radius a 
obtained for the palintone in Hart  [3]. Thus R m tends to an asymptotic limit as a 
increases, and again there is a point of decreasing advantage for increase of a. This point, 
if taken as the point of inflexion of the graph of R m, gives the distinctive value 

a = a o = ( m / 2 q )  1/3, 

or, on restoring the original constants, 

ao = ( c l k 2 m / [ 2 k 3  (co + c2 x )] )1/3. (36) 
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The corresponding maximum range is 

Rm( ao) = clk2A*/[3gk3( co + c2X) ] • (37) 

Formula (36) is proposed as the calibration formula for the onager. It has a similar 
cube-root dependence on the mass m to equation (30), but the sling length ratio ~, 
(= l/s) now enters the denominator. Evidently by (36) and (37) both the spring radius a 0 
at the point of inflexion and the corresponding range increase with lengthening sling. 

Although the Greeks and Romans certainly used the calibration formula (30), equation 
(36) is too complicated for them to have applied, at least in this form. Now, however, a 
practical application of formula (36) would start by fixing ~ at some numerical value - 
probably corresponding to the longest practical sling. Then the mass m to be thrown 
would be chosen and a 0 follows from (36), the constants k 2 and k 3 being known or 
deduced from the palintone specifications. The constants given in (32) are expected to be 
valid for a considerable range of machine size since their derivation concerns the 
dimensionless formulation (31). The formula (34)2 then supplies the arm parameter l, and 
the sling length follows from s = l/~. As a check (36) gives a o = 9.17 mm for m = 4.9 g 
and sling length 141 mm; also a 0 = 6.20 mm for m = 3.5 g and sling length 47 mm with 
l = 175 mm in both cases. Since in our experimental machine a = 10.7 mm it would seem 
that this machine was somewhat overpowered if (36) is taken as the criterion. 

Appendix. Buffered motion 

If the arm is stopped in its motion by striking a buffer (Figure 1) before the missile is 
released the range is in general considerably reduced. Referring to Figure 9 we suppose 
that the sling makes an angle ~0 with the downward vertical, with the missile at point A, 
at the instant when the arm strikes a buffer set at 0 = 90 °. In all practical cases 
considered we found that 0 < ~0 < 180 ° and this condition is assumed in the following. 
The buffer is padded and no rebound of the arm occurs. 

In the above circumstances at impact the sling goes slack and the missile, still i n  its 
pouch, is projected on a parabolic path with initial velocity u 0 and at angle t0 to the 
horizontal. This motion continues until the point A' is reached where the sling is again 
taut. At this point one of two things may happen: either the sling makes a small enough 
angle with the finger to overcome friction and to enable the ring to slip off the finger 
instantly and thus launch the missile, or this angle is too large, an impulse is imparted to 
the projectile and the circular motion is resumed until the angle between sling and finger 
is small enough to enable the ring to slip off and to launch the projectile. (A third 
possibility at A': that the angle between sling and finger is too large for slipping of the 
ring and continues to increase, involves values of a that are too negative for practical 
application and is omitted - see after (A6)). The conditions for the first case to occur 
pertain to a finite interval of values of a, and the range attained by the projectile is the 
same for all and corresponds to the conditions at A. For larger values of a reduced ranges 
occur and typical cases are indicated in Figure 7 for the two longer slings. The details are 
as follows. 

Given the condition of a parabolic trajectory issuing from A (Figure 9), the point A' is 
found by finding the intersection of this parabola with the circle with centre at the arm 
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O 

Figure 9. Illustrating projectile motion when arm strikes buffer at 0 = 90 °. 

end B and radius s. This leads to the solution of a cubic equat ion in D ( =  tan ~kx) where 
~kl is as shown in Figure 9: 

D 3 - D 2 tan/30 + (1 + 3 ' )D  + 3' tan q~0 - tan/30 = 0, 

where  

3' = ~( Ns /uo )  2 cos q~o sec2/3o • 

(M) 

(A2) 

Thus  the point  N is known. ( In  pract ice ~1 differs little f rom fl0-) We can now find 

q~x = 2~r - 2~kl - ~0- (A3) 

Nex t  the condi t ion for  no release of  the ring on the finger in posi t ion A' is that  friction 
F < / x P  (as in See. 4) or  (see Figure 10) 

T t  COS("//" - -  ' 1  - -  3 %" o/) < ~ T '  sin(~r - ~1 - 3 %" o~). ( A 4 )  

This  condi t ion leads to t an0r  - qh - 3 + a)  > #-1 ,  or 

a > ~b I - -  q'g//2 - f +  8. (A5) 

Equal ly there will be  immedia te  release of  the missile at A' if 

a < ~1 - ~r/2 - f +  8. (A6) 
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A' 

~-~J T' 

Figure 10. Release condition at the finger illustrated. 

In Figure 10 the sling is shown to the fight of the finger; a situation of no release of the 
missile is also reached if the sling direction is far enough to the left of the finger. And this 
leads to a lower bound on a in (A6) for immediate release - but the values implied are 
sufficiently negative to  be irrelevant to the examples discussed here. 

Thus if condition (A6) applies then the missile inherits the range associated with the 
launch conditions at point A and the horizontal dashed segments in Figures 7b and 7c 
result. 

However for greater values of a, where (A5) applies, the missile undergoes an impulse 
which brings it back to the circular path around B. The initial tangential speed after this 
impulse can be calculated as 

U i - -  --U 1 COS(ill + t~ l ) '  (A7) 

where u x, fll refer to the particle motion at A' just before the impulse (Figure 9). 
We can calculate these quantities from the parabolic motion of the missile as follows: 

ul = (~2 +)~2)1/2, fll = arctan()~/£), 

where, at A', 

= Uo cos  #0 ,  P = u0 s in  Bo - gx^,/(Uo cos  ~ 0 ) ,  

and XA,, the abscissa of A' relative to A, is given by geometry as 

x A, = 2s sin(~kl + ~o) cos ~kx. 
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The  part icle then continues in the circular pa th  until  the release condi t ion is encoun-  
tered at q~ = q~2 where 

alp2 = ~r/2 + a + f -  3. (A8) 

The  tangential  velocity u 2 at this poin t  is the initial velocity of  project ion of the missile 
and  is given by  the usual  energy considerat ions.  We find, on using (A3), (A7) and  (A8): 

u2(  N s  ) -2  = ( u{)2( N s )  -2  - 2~(cos q~l - cos q~2), 

and  the dimensionless  range, as in (27), is given by  

k = - u ~ ( X N s )  -2 sin ~2 cos q'2, 

(A9) 

(A10) 

on  subst i tut ion f rom (A8) and (A9). The  remaining par ts  of  the dashed graphs  in Figures 
7b and  7c then follow. 
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